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An Efficient Algorithm for the Three-Dimensional
Analysis of Passive Microstrip Components

and Discontinuities for Microwave and
Millimeter-Wave Integrated Circuits

Achim Hill and Vijai K. Tripathi, Semor Member, IEEE

Abstract —A numerical technique for the full-wave analysis of shielded,
passive microstrip components on a two-layer substrate is presented.
The distinct feature of the technique is a novel, eff]cient formrrlation for

establishing the system matrix in the moment method procedure which
allows the derivation of the elements of any large matrix by a linear
combhsation of elements in a precomputed index table, The table is
obtained from a two-dimensional discrete fast Fourier transform. In the
moment method procedure, the two-dimensional surface current is rep-
resented by locally defined rooftop functions. The effect of the resonant
modes associated with the metallic enclosure on the numerical proce-

dure is examined. In order to demonstrate the features and the accuracy
of the technique, numerical results for microstrip open end and for a

right-angle bend with and without the compensated corner are com-

puted by using the resonant technique and are compared with other
published computational and experimental data.

I. INTRODUCTION

A considerable amount of work has been done in recent
years on the frequency-dependent characterization and

modeling of microstrip components and discontinuities, re-
sulting in several useful numerical techniques [1]. These
include solutions based on waveguide and two-dimensional
cavity models, use of the method of lines, finite difference
and finite element techniques, and the solution based on an
integral equation formulation in real space and the Fourier
transform domain [1]–[31]. All the accurate methods are, in
general, computationally intensive; devising techniques to
improve the efficiency of various methods continues to be a
challenging task.

The integral equation formulation in real space and the
spectral domain has become a promising technique for the
analysis and simulation of components and discontinuities in
microwave and millimeter-wave circuits. The simulation of
passive (M)MIC structures can be classified into three cate-
gories, namely open, shielded, and partly shielded configura-
tions. Each shielding type requires a somewhat different
numerical treatment. Efficient computational methods have
been derived for the open [21] and partly shielded structures
[23]. However, the shielded configuration still requires inten-
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sive computational treatment. The insufficient development
of full-wave simulators which accurately incorporate housing
effects has also been pointed out recently by Jansen and
Wiemer [25].

In this paper a technique which allows for an efficient
numerical treatment of the shielded circuit structure is pre-
sented. It leads to reasonable computation times for the
analysis of 3-D microstrip structures for the case when 2-D
locally defined surface currents are employed in the moment
method. The analysis represents an extension of the pre-
vious work reported by Jansen [7], Koster [8], Rautio and
Barrington [12], [13] and Dunleavy and Katehi [27], [28].

II. MATRIX EQUATION FORMULATION

Consider the boxed structure shown in Fig. 1. The source-
free medium consists of three homogeneous, isotropic dielec-
tric layers and is bounded by a box of perfectly conducting
metal. Each layer r (r = 1,2,3) of thickness H, is character-
ized by its relative dielectric constant e,. The box extends
from x = O to x = a, y = O to y = b with bottom and cover
plates at z = O and z = c. The microstrip metallization of
zero thickness and infinite conductivity is located at the
interface.

The tangential electric field components on the interface

(EX, E,) are expressed in terms of surface currents (.JX,.lY):

EX = ~ ~~n.X~../JX(,’, Y’)COS kX,.x’sin kY,, y’dx’dy’
m n

.cos kX,nx sin k ~,,y

+ ~ ~ %11Rznrn /Jy(x’,~’)sinkx,,,x’cosky,,y’h’dy’
m n

.COSk,,.x sin kYny

EY = ~ ~Fr,,,, RZ,,,,,~J., (X’, Y’)COS k,r.xrsin kY,, y’dx’dy’
In n

. sin kX,~X COS k y,,y

+ E )2Fl?lny~,,,,,~J.,(x’, y’)sin ~.,,,,X’COSky,,Y’ti’dY’
m n

“sin k.,,, xcos ky,ly. (1)
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Fig. 1. Microstrip discontinuity in shielded box.

The expressions F~nXYMn, F~nRmn, and ~nnYXMn repre-
sent the components of the spectral-domain Green’s dyadic.
These have been derived by Jansen and Koster [7], [8] and
they are summarized in the Appendix for convenience. The
discrete spectral variables in the above equation are given by
k,n= m~/a and kYn = rim-/b.

Equation (l), a Fredholm integral equation of the first
kind, maps the surface current into an electric field on the
interface. Following the moment method procedure, the
current is expanded into basis functions and substituted in
(l). In a subsequent step (1) is tested with suitable functions
which in the present case were chosen to be identical to the
basis functions leading to a Galerkin implementation of the
method. The present method employs rooftop functions as
the basis elements [13], [15]–[17]. Fig. 2 shows the discretiza-
tion of the metallized surface with discretization Ax and A y
in the .x and y directions, respectively. The center of x-
directed currents is marked with a cross, and the center of

y-directed currents is marked with a circle. Note that the ~.
and y-directed currents are offset by (Ax /2, A y /2) in order
to ensure edge conditions and generate correct results. A
detailed discussion for the current offset can be found in
[12]. The total current is approximated by

J= xaXkJXX(x, x~)JXy(y, yk)+ XayiJy.(x, xi), Jyy(Y~Yi)
k i

where

I
U–uk
—+1,

Au
uk– Au<u<uk

~uu(U, Uk)= ‘k–u +1

Au ‘
uk<u<uk+Au

\o, otherwise

with u = x or y and

Ju(,(u, u~) =
{

1, uk– Au/2< u<uk+ Au/2

O, otherwise

(2)

(3)

(4)

with uu = xy or yx.
Aft& applying the testing procedure, the linear system of

equations can be summarized as follows:

(5)

The left-hand side represents the scalar product of the
electric field and a testing function at the ith subsection.
These vanish on the metal except for subsections where
sources are defined. The P matrix contains the testing
products and the Green’s dyadic of the associated boundary

t

x

a

I dx

Fig. 2. Discretization of conductor surface. Crosses represent center
of x-directed current; circles represent centers of y-directed currents.

value problem. Vector xl is formed by the expansion coeffi-
cients for current as given in (2), i.e., A,i = axi and AYi = aYi.
In the above equation,

VXi = //EXJXi tidy

Vyi = j/EYJYi dxdy (6)

P~~ = ~ ~ G;. cos kXtnxjX sin k ~. yj. cos kxmxix sin kyn J’ix
m n

p:= ~ ~ G~~ sin k.,rrxjy cos kY. Yjy cos kxmxix SiII kyt, Yix
m n

P~J = ~ ~ G:. cos kX~xjX sin k ~. yjX sin kx,.xiy cos k ~,,YiY
m n

P; = ~ ~ G~~ sin kX1nxjY cos kYt, yjy sin kXtnxiY cos kY,, Yiy

m n

(7)

and

G;, = FMnX~nflG~(Ax)G; (Ay)

G:: = ~nnR~.Gt(AY)G,( AX) G,(AX)G,(AY)

G~=FmnR,nnGt(AX) G,(AY)Gt(AY)Gr(A~)

G:; = ~nnYX,nnG,?(AY) G?(AX) (8)

where

/
~(l-cos(k,, Au)), k,, +fI (9)

G,(Au) = Auk:

k,, = O

(G(Au)= ~(sin(k,, Au/2),
k,, # O

r (lo)

0, ‘ k,, =0,

III. ENHANCED ALGORITHM

The evaluation of the elements Pi/ of the moment matrix
is time consuming owing to the two-dimensional summation
and the repeated computation of the Green’s dyadic with
associated harmonic functions, and the time requirement for
the solution of the linear system (9) is negligible compared
with the formation of the matrix.
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In addition to the possible use of fast Fourier transform

(FFT), efficiency considerations for the summation proce-
dure in (7) have already been discussed by Rautio [12], where
the p,eriodicity of the harmonic functions was used to de-
velop a summation scheme which avoids the periodic evalua-

tion of the trigonometric functions. The present approach
makes use of two techniques which lead to drastic reductions
of computation times. The first technique employs cus-
tomized 2-D FFT routines to compute the index tables, and
the second constitutes the application of specialized indexing
routines which allow the derivation of all elements of the
moment matrix by a simple linear combination of elements
of the index tables. This second technique completely elimi-
nates the IEX. (IEX – 1)/2 operations for the formation of
the moment matrix, where IEX is the total number of
expansion functions.

In order to employ FFT subroutines the representation of
the moment matrix has to be transformed into a suitable
form. In addition, the interface is uniformly discretized in .x
and y directions such that

xjx=piXAx, P,,=O,l,. ”., M

yiy=~iVAy, s,Y=o,l, ”””, fv

Xy=(piy+~)A~, piy=O,l,, M-l

y{X=(siX+~)Ay, SII=O,l,-”,N-l. (11)

Since the respective operator of the Fredholm integral equa-
tion (1) is self-adjoint, the moment matrix is symmetric and
PYX, which is equal to PYY, is no longer considered in the
numerical treatment. After using trigonometric identities
and substituting (11) into (7), the moment matrix P can be
rewritten as

p:; = fxx( P)x - Pll,s,. - ‘ix) - fxx(Pjx - P,X,SJX+ ‘ix)

+ Lx( Pjx + P,.r, Sjx – ‘lx) —.fxx( PJx+ Pix, ‘jx + Six)

(12)

~;; = fxy( P,y + Pi~, ‘Jy + ‘,x) – fx~( Pjy + ‘f.X> ‘Jy + ‘IX )

+ f.y( PJY- PIx, s,y + ‘lx) - fxy(Pjy - Pi., sjy - ‘,x)

(13)

‘?; = fvy( Pjy – P,y> ‘1P – ~,y) + fyy(pjy – P, Y>SJY+ sly)

- fyy(Pjy + Piy, sjy - ‘,y) - fyy(Pjy + Ply>sjy + ‘,y)

(14)

with

mT(u+l/2)
fXy(u, v)= ~ ~G~~sin ~

?m-(u + 1/2)
sin

mn N

(15)

The expressions for P’], ( 12)–(14), are now in a form which is
suited for the application of 2-D discrete FFT’s. If we were
to compute each element of the moment matrix by using the
FFT algorithm, we would require IT= lEX * (IEX – 1 )/2

evaluations for a matrix with dimensions IEX, e.g. IT = 4485
if IEX = 300. The technique presented here allows us to
reduce the IT evaluations to IT = three evaluations for any
matrix size. The elements P(J are obtained from a linear
combination of components of the FFT’s with respect to the
tmnsform variable, as will be outlined in the following.

Instead of computing (12)–(14) for each P~~, P~~, P~~, only
three FFTs are computed and stored in suitable arrays:

Pxx(u, u)= fxx(u, u), U= (),... ,M; u= O,. .O, IV (lfj)

.Pxy(u, u)= fxy(cL, u)> u=o,. ..,l–l.

L,=(),. ... j-j (17)

Pyv(Ll, u)= fyy(Z4> u)? U=o,. .”, lw; l!= (l... ,N. (18)

The elements of the moment matrix are then derived from a
linear combination of (16)–(18), as implied in (12)–(14) un-
der consideration of the periodicy of the trigonometric func-
tions.

The double infinite summations have to be truncated at a
suitable bound such that a certain convergence criterion is
fulfilled. This upper bound can exceed the period of the
respective FFT’s. In other words, the sampling ratio, defined
as the number of spatial frequency samples per discretization
Iengtb, is larger than unity. To circumvent this problem, the
functions G,nn in (20) are presampled at periodic intervals to
form a summation which is then submitted to the FFT
routines. The idea of such a first-stage summation has been
used before, by Rautio [12]; however, the implementation
was different. As a consequence of the first-stage summation
scheme, each of the three FFT’s in (21)–(23) is split into four
FFT’s, which yields a total number of 12 FFT’s for the
evaluation of a moment matrix. To incorporate an arbitrary
number of spatial frequencies in the FFT algorithm, the
three basic FFT formulations given in (16)-(18) are decom-
posed as follows.

iv!

.co~ n~(s’11~2)
.’

N

n7r(s+l/2)
sin

N

+ ( – 1)(” ‘J’)x ~ G,:,”(’ Cos
mr(p + 1/2)

Mm )/

nll-(s + 1/2)
“ Cos

N“
(20)



86 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 1. JANUARY 1991

+
Dyadic xx

++

ee eo oe 00

++ ++

2D FFT

++++

Table xx

TCombination

+t t

@

Dyadlc xy

ee eo oe 00

vee eo oe 00+
GTable xy 1

Combination 1

t

1 I

Fig. 3. Enhanced algorithm for establishing the moment matrix (MQM)

The quantity

is identical to (24) with G~~ replaced by G~~. The abbrevia-
tions in (24) and (25) are defined as follows:

G;nPq =zz(m+iPA4, n+jqN)

‘{~ Jq

with p=e or O and q=e or O and i,, j,, = 0,2,4, ...;
iO, jo=l ,3,5,... . The formation of the moment matrix is
summarized in Fig. 3. After discretizing the geometry, each
Green’s dyadic together with the associated spectral repre-
sentation of the basis functions is presampled as suggested in
(26). Next, 2-D FFT’s are applied as outlined in (16) through

(18). Results of the FFT’s are then stored to form index
tables. Now the moment matrix of any geometry on the
discretized interface can be built by a suitable linear combi-
nation of the elements of the three index tables as implied in
(12) through (14).

IV. NUMERICAL RESULTS

The algorithm described above is applicable to both deter-
ministic and eigenvalue problems [8], [12], [27]. The deter-
ministic procedure as discussed in [12] and [27] allows for the

derivation of port impedances for given excitations at the
terminal ports, These impedance values are then used for
the determination of the network matrix. The eigenvalue
formulation requires the evaluation of the resonance fre-
quency of the microstrip structure in the shielding box, from
which discontinuity parameters are extracted as shown in [7],

[81, and [321. We have used the deterministic approach for
the first example only and the eigenvalue computation ap-
proach for all the subsequent examples.

As an initial confidence test for the presented technique,
the input impedance of a microstrip stub was computed and
compared with results obtained by Rautio and Barrington
[13]. The box was 4 cm long, 2 cm wide, and 5 cm high. The
strip line was 1 cm wide and 2.81 cm long and was deposited
on a l-cm-thick substrate with a relative dielectric constant
of 10. The results are shown in Fig. 4 and the agreement is
obvious.

The open end discontinuity of a microstrip line can be
characterized by an effective length extension, leff, or an
equivalent terminating capacitance which accounts for the
fringing fields at the open end. Dynamic simulation of the
open end effect in a shielded environment have recently
been developed by Jansen and Koster [30] and Dunleavy and
Katehi [26], and these are included for comparison in Fig. 5.
The shielding geometw and strip dimensions were chosen to
be identical to those used in [26]. The box was 7.747 mm
wide and 5.08 mm high. The frequency behavior of the
effective length computed in this work behaves in the same
manner as described by Koster [8]. For low frequencies the
length decreases then passes through a minimum and in-
creases for higher frequencies. The box used in the pre-
sented analysis exhibits a resonance around 24 GHz for the
specified dimensions, which explains the deviation of the
effective length at this point from the results obtained in [26]
and [29].

The S parameters for typical right-angle-bend geometries
having various W/H ratios are shown in Fig. 6 for an
alumina substrate of height 0.635 mm. All bends are ana-
lyzed in a square box of 12.7 mm side length and 3.81 mm
height. For the nominal 50 Q line (W/H = 1) S-parameter
simulations are compared with design formulas from
Kirschning et al. [30], which were derived from measure-
ments in the frequency range between 2 and 14 GHz for an
open structure. The deviation in magnitude of S1, is within
3% for the frequency range up to 14 GHz. However, larger
differences are observed for the phase beyond 4 GHz. These
differences are attributed to the effect of the shielding box
used in these computations.

Next, a bend is simulated in the frequency range between
50 and 120 GHz to demonstrate the effect of parasitic box
resonances. The bend of 100 pm width is deposited on a 100
~m GaAs substrate with a 5 pm oxide layer. The box
dimensions were a = 1.9 mm and c = 1.05 mm, Fig, 7 shows
the associated S parameters. To show the effect of box
resonances, the height of the box is reduced to c = 200 pm.
The oxide layer is removed in this example. Investigations of
the first LSM ,f~ parametric waveguide mode predict a reso-
nance in the vicinity of 80 GHz, which is verified by the
S-parameter computation shown in Fig. 8.

As a last example, the S parameters of a right-angle bend
are compared for a compensated corner. The compensation
is obtained by cutting out a square at the corner of the bend.
The form of the compensation is shown in the inset of
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Fig. 5. Effective length of open microstrip end (u = 7.747 mm, c = 5.08 mm, HI= ().635 mm, e, = 9.6, W/ H,= 1.57).

Fig. 9(a). The configuration of the first example for right-an-
gle bends is used with a W\H ratio of 2. The S parameters
are compared for a compensation ratio of s/ W = 0.83, Fig.
9(a) shows the magnitude of S1,, For the compensated case a
considerable reduction of S,, is achievable. The ratio of S1,
for the compensated case and S1, for the uncompensated
case is about 0.125 at the low frequency end at 6 GHz and
0.27 at the high frequency end at 20 GHz. Comparing the
deviation in the phase of S1, (Fig. 9(b)) yields a change of
capacitive to inductive loading, which is due to the increased

current crowding effect in the corner region of the compen-
sated edge,

V. CONCLUSION

An enhanced algorithm for the full-wave analysis of mi-
crostrip discontinuities on a double-layered substrate has
been presented. The procedure is based on the use of index
tables that are computed from 2-D discrete FFT routines.
Elements of the associated moment matrix are then derived
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Fig. 6. S parameter of right-angle bend for various lV~FJi ratios (u= b = 12,7 mm, c =3.18 mm, H, = (),635 mm,

@I = 9,~~ (a) SI I (MAGk (b) SI I (RAD); (c) S,2 (RAD). Dottecj lines in the inset represent reference planes.



HILL AND TRIPATHI: ALGORITHM FOR ANALYSIS OF PASSIVE MICROSTRIP COMPONENTS AND DISCONTINUITIES

1.00

r“”- S12

0.80

-1

4

0.00 I,,,,,,,,,l,c,,,,or+,,ra %,8%8,,
40.00 60.00 80.00 100.00 120.00

Frequency (GHz)

(a)

–0.ocl

-0.50

1~
Slz

–2.50
i

-3.00 1

-3.50 1, Ital,,,fi,,litiltr,,,d,, ,88884rr
40.00 60.00 80.00 100.00 120.00

Frequertcy (GHz)

(b)

Fig. 7. .S parameter of right-angle bend, double-layered substrate (a=
b= 1.9 mm, c= 1.05 mm, H, = 0.1 mm, Hz =0.005 mm, El = 12.9,

f~~:;, ~= 0.1 mm} (a) .$!! (MAG), .S}2 (MAC); (b) S[l (RAD), S12

from a simple linear combination of the elements in the
index table. The method was applied to simulate resonant
modes for various discontinuity structures, including the ef-
fect of the shielding walls, in order to demonstrate its capa-
bilities. The presented technique should be helpful in the
characterization of single and coupled microstrip discontinu-
ities for (M)MICS,
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APPENDIX

Expressions for the components of the Green’s dyadic in
(1) are summarized. Define

{

4, mandn>O
L,.,l = O, m and n = O

2, m+ Oandn=Oorn+Oandm=O
‘.

(Al)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A1O)

~,l,,i = kz,n,li tan ( k:,n,l, Hi). (A13)

Then,

XYJ,l = k:,,, X,,,,, + k &~,,,, (A14)

YX,,,,, = k~,l Xl,,,, + k:,,, ~,l,t (A15)

RZ,,,,, = k,,,,kv,,z,,,,l . (A16)
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